3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Действие лучистой энергии. Лучистая энергия солнца Виды лучистой энергии

Общие сведения о лучистой энергии солнца и их применение

Лучистая энергия Солнца, поступающая на Землю, представляет собой самый значительный источник энергии, которым располагает человечество. Солнце, как и другие звезды, является раскаленным газом. Внутри Солнца существует область высокого давления, где температура достигает 15 – 20 млн. град. На Солнце имеется в незначительном количестве кислород и поэтому процессы горения, понимаемые в обычном смысле, не протекают сколько-нибудь заметно. Огромная энергия образуется на Солнце за счет синтеза легких элементов водорода и гелия.

Лучистая энергия солнца, поглощаясь поверхностью почвы, превращается в тепловую и передается в нижележащие слои почвы. Часть солнечной энергии отражается поверхностью почвы. Если температура поверхности почвы ниже, чем температура приземного слоя атмосферы, то почва отдает тепло, аккумулированное за счет поступившей солнечной радиации.

Лучистая энергия Солнца, поступающая на Землю, представляет собой самый значительный источник энергии, которым располагает человечество. Солнце, как и другие звезды, является раскаленным газом. Внутри Солнца существует область высокого давления, где температура достигает 15 – 20 млн град.

Лучистая энергия солнца, преобразуемая в тепло, может быть использована, минуя электролиз, непосредственно для термохимического разложения воды. Ранее было показано, что двухстадийные термохимические циклы мало вероятны при использовании тепла атомных реакторов. Но необходимые для двухстадийного термохимического цикла разложения воды температуры могут быть достигнуты при использовании солнечной энергии.

Лучистая энергия солнца, в первую очередь ультрафиолетовая часть солнечного спектра, обладает значительным биологическим действием. Мод ее влиянием в коже образуется витамин I), необходимый для правильного обмена в организме фосфора и кальция, важнейших составных частей костной и мозговой тканей.

Количество лучистой энергии Солнца, которая поступает за 1 мин на площадку в 1 см2, поставленную вне земной атмосферы перпендикулярно к солнечным лучам на среднем расстоянии от Земли до Солнца, называется солнечной постоянной. Предполагают, что при максимуме солнечной активности излучение Солнца несколько увеличива -, ется, однако оно не превышает долей процента. I Солнечная активность существенно влияет на земные процессы, проявляющиеся через солнечно-земные связи в ответной реакции Земли ( ее внешних оболочек, включая биосферу) на изменение указанной активности.

С лучистой энергией Солнца связана освещенность земной поверхности, определяющаяся продолжительностью и интенсивностью светового потока. Вследствие вращения Земли происходит периодическое чередование темного и светлого времени суток, а также изменение продолжительности светового дня. Поскольку данный фактор имеет правильную периодичность, то его значение для жизни исключительно велико.

При фотосинтезе лучистая энергия Солнца преобразуется в химическую и в виде потенциальной энергии находится в растительной органической массе – продукте фотосинтеза.

Радиацией называют лучистую энергию солнца, попадающую на облучаемую поверхность.

Повышение плотности потока лучистой энергии Солнца, как уже отмечалось, может осуществляться зеркальными и линзовыми системами, однако в дальнейшем основное внимание будет уделено зеркальным концентрирующим системам, что не снижает общности принципиальных положений развиваемого подхода к формализованному описанию рассматриваемого процесса.

Источником естественного освещения является лучистая энергия солнца. Естественная средняя наружная освещенность в течение года по Месяцам и часам дня резко колеблется, дости-гая в средней полосе нашей страны максимума в июне и минимума в декабре.

Неисчерпаемым источником тепловой энергии является лучистая энергия солнца, которая вызывает также образование ветра, потоков воды и других видов энергии. Однако промышленное использование энергии солнечной радиации в виде теплоты является пока огра.

СОЛНЕЧНАЯ ПОСТОЯННАЯ – полное количество лучистой энергии Солнца, падающее вне атмосферы Земли на площадку единичной площади, расположенную перпендикулярно солнечным лучам на ср.

Источник естественного освещения – поток лучистой энергии солнца, доходящий до земной поверхности в виде прямого и рассеянного света. Оно наиболее гигиенично – имеет благоприятный спектральный состав. В зависимости от географической широты, времени года, состояния погоды уровень естественного освещения может резко изменяться и в довольно широких пределах.

ГЕЛИОУСТАНОВКА – устройство, улавливающее лучистую энергию Солнца и преобразующее ее в другие, удобные для практич.

Основным источником тепла для почвы является лучистая энергия солнца. Некоторое значение может иметь тепло, выделяющееся при экзотермических реакциях, вызываемых в почвенном слое микроорганизмами.

Первый термический фактор обусловлен неравномерным распространением лучистой энергии Солнца по поверхности Земли. В приполярных районах до 95 % лучей Солнца отражается от снега и льдов. Это объясняется тем, что в высоких широтах лучи входят в атмосферу под косым углом, а значит, их световая энергия распределяется на большую площадь земной поверхности. Скользящие солнечные лучи, проникающие в атмосферу не под прямым углом, проходят через более толстый слой воздуха. Поэтому здесь всегда холодно, формируется постоянно высокое давление. И наоборот, в экваториальной зоне солнечные лучи падают на поверхность Земли под прямым углом, сильно ее нагревая. В результате здесь формируется зона низкого давления. Поэтому происходит перемещение воздуха из приполярных районов в область экватора, т.е. из зон высокого в зоны низкого давления. Экваториальные воздушные массы, интенсивно и быстро нагреваясь, поднимаются и в высоких слоях атмосферы расходятся к северу и югу и охлаждаются.

ГЕЛИОЭЛЕКТРЙЧЕСКАЯ СТАНЦИЯ – гелиоустановка, преобразующая лучистую энергию Солнца в электрич.

Допустим, что мы можем собрать лучистую энергию солнца, которая падает на поверхность земли за год; если эту лучистую энергию мы сможем превратить в такую энергию, которая была бы для нас полезна, то оказывается, что при таком превращении мы покроем все источники энергии, которые в настоящее время имеются на земле.

Все большее практическое применение находит использование таких источников энергии, как лучистая энергия Солнца в полупроводниковых установках и фотоэлементах, использование внутреннего тепла Земли, энергии морских приливов и пр. Все это, вместе взятое, наряду с освоением управляемых термоядерных реакций позволит во много раз увеличить количество вырабатываемой электрической энергии по сравнению с современным уровнем.

Такой режим ( постоянство QI) реально осуществляется в термогенераторах, использующих лучистую энергию солнца или тепло распада радиоактивных изотопов.

Покрытия с высоким значением степени черноты находят широкое применение в установках, использующихлучистую энергию Солнца. Практическая гелиотехника в настоящее время развивается бурными темпами.

Среди климатических факторов важное место в жизни растений занимают свет и тепло, связанные с лучистой энергией солнца; вода; состав и движение воздуха. Атмосферное давление и еще некоторые явления, входящие в понятие климата, существенного значения в жизни и распределении растений не имеют.

В будущем возможно строительство более экономичных гелио-станций с использованием полупроводников ( солнечных батарей) для непосредственного превращения лучистой энергии Солнца в электрическую энергию. ]

Свет – главный экологический фактор, определяющий основу жизнедеятельности растительного организма – фотосинтез, процесс превращения зелеными растениями лучистой энергии солнца в энергию химических связей органических веществ. Этот процесс происходит с поглощением углекислого газа и выделением свободного кислорода. При участии поглощающих свет пигментов – хлорофилла и некоторых других – углекислый газ и вода, вступая в реакцию, образуют основную пищу растений – углеводы.]

В своих исследованиях мы исходим из соображений, что, изменяя оптические свойства поверхности почвы, можно увеличить поглощение лучистой энергии Солнца днем и уменьшить излучение тепловой энергии ночью. Наши прошлогодние опыты с аце-тилцеллюлозной пленкой показали, что эта пленка может служить прекрасной защитой от излучения, но пока она слишком дорога для полеводства.

В широких масштабах развертываются работы в направлении создания солнечных электростанций, основанных либо на применении солнечных концентраторов совместно с термодинамическим ( паротурбинным) циклом, либо на использовании технологии прямого преобразования лучистой энергии Солнца в электричество.

Таким образом, энергия, доставляемая Солнцем, может быть использована для получения работы в ветряном двигателе только при условии, что имеется разность температур отдельных частей атмосферы, создаваемая поглощением лучистой энергии Солнца и частичным испусканием ее в мировое пространство. Итак, на совершение работы идет не вся теплота, полученная от нагревателя, а только ее часть, остальная же теплота отдается холодильнику.

Читать еще:  Fallout 4 женская одежда id. Черный жилет & Широкие брюки

Атмосфера определяет световой и регулирует тепловой режимы Земли, способствует перераспределению тепла на земном шаре. Лучистая энергия Солнца – практически единственный источник тепла для поверхности Земли – частично поглощается атмосферой. Достигшая поверхности Земли энергия частично поглощается почвой и водоемами, морями и океанами, частично отражается в атмосферу.

Электромагнитная радиация ( лучистая энергия Солнца) – электромагнитные волны, распространяющиеся со скоростью 300 тыс. км / с. Корпускулярная радиация состоит в основном из протонов, движущихся со скоростью 300 – 1500 км / с и практически полностью улавливаемых магнитосферой Земли.

Солнечная радиация является существенным фактором формирования климата. Ввиду запыленности городовлучистая энергия Солнца поглощается частичками пыли. По данным американских и английских исследователей, большие города получают на 15 % меньше солнечной радиации, на 10 % больше дождя, на 10 % больше облачных дней, причем за последние 80 лет частота возникновения туманов увеличилась в два раза.

Действие лучистой энергии

Лучистой энергией называется со­вокупность всех электромагнитных волн, возникающих и распро­страняющихся в пространстве со скоростью, приближающейся к 300 тыс. км/с. Патологическое влияние на организм оказывает преимущественно излучение, способное вызывать ионизацию в тка­нях. Причем болезнетворное действие лучей обратно пропорцио­нально длине их волн.

Различные виды лучистой энергии обладают неодинаковым дей­ствием. В одних случаях лучистая энергия, поглощаясь тканями, переходит в тепловую, в результате чего происходит перегревание животных; в других она оказывает химическое влияние на ткани, вызывает ряд химических превращений в организме, дает так назы­ваемый фотохимический эффект.

В возникновении патологических процессов в организме опре­деленную роль могут играть солнечные лучи и в первую очередь ультрафиолетовые солнечного спектра. Эти лучи обла­дают химическим действием, и чем короче длина волны, тем они ин­тенсивнее. Эффект влияния лучей на организм зависит от длитель­ности действия, их угла падения, толщины атмосферного слоя, че­рез который лучи проходят, а также от проницаемости тканей и от общей реактивности организма. При длительном действии ультра­фиолетовых лучей у животного расширяются сосуды, падзет кро­вяное давление, нарушается обмен веществ (в основном белковый), усиливаются процессы распада в тканях.

При интенсивном и длительном облучении больших посерхиос-тей тела у животного могут возникнуть резкие расстройства гемо­динамики — типа шока, что иногда приводит даже к летальному исходу. Патогенное воздействие ультрафиолетовых лучей на цен­тральную нервную систему развивается в двух направлениях: с одной стороны, происходит торможение ее деятельности вследст­вие раздражения рецепторного аппарата (лучами и токсическими продуктами распада тканей); с другой стороны, появляется токси­ческое воздействие на нее (гуморальным путем) облученного холе­стерина и белково-липоидных комплексов крови.

Длинные волны солнечного спектра, крас­ные и инфракрасные лучи оказывают на организм тепловое влияние. От чрезмерного действия этих лучей наблюда­ется перегревание организма или возникают различной степени ожоги.

Под влиянием прямых солнечных лучей, если они попадают на незащищенную голову животного, может возникнуть солнечный удар. При этом происходит расширение сосудов центральной нерв­ной системы (мозговых оболочек) и повреждение вазомоторов. Иног­да отмечают разрывы капилляров и кровоизлияния в нервную ткань. Вначале животные сильно возбуждаются, дыхание и пульс у них учащаются, начинаются судороги, затем наступает стадия угнетения. Животные нередко гибнут от паралича центров дыха­ния или кровообращения. Влияние солнечных лучей на организм может наступить не сразу, а спустя несколько часов, то есть когда ультрафиолетовая химическая часть спектра начинает проявлять свое действие. В отличие от теплового удара при солнечном ударе необязательно предварительное перегревание организма: повыше­ние температуры тела при солнечном ударе считается вторичным фактором в результате раздражения нервных теплорегулирующих центров. Нарушение функции высших нервных центров, возбуж­дение коры головного мозга при солнечном ударе более вариабель­ны и стойки, чем при тепловом.

Излучение лазера. Лазер способен излучить монохроматические пучки света с ма­лым углом расхождения. Лу­чи действуют на ткань очень короткий промежуток времени (сто­тысячные доли секунды), поглощаются они пигментированными тканями, эритроцитами, меланомами и пр. Лучи лазера разрушают живые ткани, особенно чувствительны к ним опухоли. Поврежде­ние биологического объекта происходит в результате термическо­го действия луча на ткани и поглощения ими тепловой энергии. В тканях и клетках одновременно образуются токсические вещест­ва и изменяется действие тканевых ферментов. Кроме того, возмож­но механическое действие вследствие мгновенного перехода твердых и жидких веществ в газообразное состояние и повышения внутри­клеточного давления (до нескольких десятков и сотен атмосфер).

Действие ионизирующего излучения. Ос­новной источник ионизирующего излучения — рентгеновское и радиоактивное. Биологическое действие этой радиации зависит от многих факторов: вида излучения, дозы общего или местного воздействия, внешнего или внутреннего облучения, однократного или повторного, а также от индивидуальной и видовой чувстви­тельности организма.

Различные ткани обладают разной чувствительностью к радиа­ционному создействию. По степени поражаемосги их можно рас­положить следующим образом’ кроветворные органы, кишечные же­лезы, эпителий половых органов, эпителий кожи и хрусталика, эндотелий, фиброзная ткань, внутренние эпителиальные органы, хрящи, кости, мышцы, нервная ткань. Функциональные и струк­турные изменения в нервной системе, наблюдающиеся при радиа­ционных воздействиях, приводят к нарушению регуляции деятель­ности всего организма, к понижению устойчивости его к инфек­ционным заболеваниям.

Лучевая болезнь — общее поражение организма в ре­зультате действия больших доз ионизирующих лучей. Возникает она как при наружном действии радиации (при аварии во время ра­боты с генераторами, способными производить ионизирующие излу­чения, при атомном взрыве, при неправильном применении лучевой терапии), так и при внутреннем облучении (при попадании внутрь организма с пищей, с вдыхаемым воздухом различных радчоактив-ных веществ).

Течение лучевой болезни может быть острое (при дейс^ии на организм больших доз ионизирующей радиации) и хроническое (на организм действуют малые дозы, но длительное время).

Отдаленные последствия ионизирующих излучений — их кан­церогенное влияние и поражение хромосомного аппарата половых клеток. При тяжелых лучевых поражениях в результате пони­жения резистентности организма отмечают аутоинфекцию, а при накоплеьин в крови токсических веществ — явления гоксеучи.

Действие электричества.

Патологическое влияние электрической энергии на организм животного произойдет, если оно непосредствен­но соприкасается с токонесущим предметом или если организм под­вергся разрядам атмосферного элекгричеава (при ударе молнии). Патологические изменения в организме зависят от свойств электри­ческого тока, реактивности организма и его тканей, а также от ряда частных сопутствующих моментов. Действие электрического тока на организм определяется его напряжением и силой, длительностью воздействия, характером тока (постоянный, переменный), сопротив­лением тканей, направлением тока и индивидуальными особенно­стями животного Пагогенность тока обусловливается и продолжи­тельностью прохождения его через организм, с увеличением вре­мени действия тока увеличивается и его вредность.

Последствие от электрического тока зависит от жизненной важ­ности органов, через которые он прошел. Наиболее опасно для жизни, если ток проходит через сердце Происходит медленный и необратимый его паралич, развиваются явления мерцательной арит­мии желудочков, и наступает остановка сердца в состоянии диасто­лы. Нервные центры у животных некоторых видов менее чувстви­тельны к электрическому току по сравнению с сердцем.

Различают местное и общее действие электрического тока. При местном действии получается ожог, имеющий иногда фор­му того проводника, который оказал свое действие. На месте входа и выхода тока из организма образуются раны, а вокруг них из-за паралича кожных сосудов — ветвистые фигуры красного цвета. Спустя некоторое время (несколько дней, недель) после воздейст­вия электрического тока на месте поражения нередко наблюдают омертвение наружных покровов и нижележащих тканей. Иногда на коже остаются небольшие серовато-белого цвета твердые участ­ки овальной или круглой формы, окаймленные валикообразными возвышениями. Это так называемые электрические знаки; гистоло­гически они имеют вид палисадообразно расположенных клеток мальпигиевого слоя кожи. Этим же тканям свойственно ячеистое строение, причем в некоторых ячейках бывает газ, образовавший­ся, по-видимому, в результате электрохимического действия тока.

Читать еще:  Поздравить сестру с днем рождения

При общем действии электрического тока в первую оче­редь поражаются нервная и сердечно-сосудистая системы. Измене­ния в центральной нервной системе протекают двухфазно: в виде кратковременного возбуждения и более длительного угнетения, или торможения. Фаза возбуждения резко выражена при действии тока небольшой силы При прохождении же тока в 100 А и выше фаза возбуждения весьма короткая, но за ней быстро следует фаза тормо­жения, проявляющаяся нередко падением кровяного давления, прекращением дыхания. В результате наступает так называемая мнимая смерть.

Нарушение кровообращения и дыхания при электротравме так­же протекает двухфазно. В первую фазу повышается артериальное и венозное давление, учащается дыхание. Изменения гемодинами­ки и ритма дыхания обусловлены электрораздражи гелем рецепто­ров, а также судорожным сокращением поперечнополосатой муску­латуры. Во время повышения кровяного давления сердечные сокращения становятся реже вслед­ствие раздражения током блуждающего нерва. Во второй фазе, которая наступает довольно быстро, кровяное давление резко пада­ет и дыхание останавливается.

У животных, перенесших электротравму, отмечают тяжелые поражения нервной системы, параличи поперечнополосатых мышц, поражение кишечника, мочевого пузыря, почек, отеки, водянку суставов. Последствия электротравмы также зависят от исходного функционального состояния центральной нервной системы, о чем свидетельствует тог факт, что у наркотизированных животных дейст­вие электротока понижено. Сильный электрический ток может вызвать состояние парабиоза тканей; этим, по всей вероятности, обусловлено отсутствие болезненности пораженных тканей.

Механизм действия электрического тока. Электрический ток действует на ор1анизм в трех направлениях: элек!рохимическом, электротермическом и элект­ромеханическом.

Электрохимическое действие выражается в возникновении процесса электролиза в тканях, в нарушении их коллоидных структур; происхо­дит, в частности, образование жирных кислот от разложения кожного сала. Электрохимический процесс является причиной образования элект­рических знаков на месте входа и выхода элект­ротока.

Электротермическое действие вызывается тем, что электрическая энергия, пройдя через ткани организма, переходит в тепловую (джоулева теп­лота). Особенно много тепла образуется при про­хождении тока высокого напряжения через кост­ную ткань, из-за чего на костях появляются так называемые костяные бусы; они белого цвета, шарообразной или яйцевидной формы, величиной с просяное зерно или горошину, состоят из фос­форнокислой извести с последующим превраще­нием ее (после прекращения действия тока и ох­лаждении массы) в твердое тело. Повышение температуры тканей особенно заметно в местах входа и выхода тока; оно вызывает раздражение нервных рецепторов, в результате чего возникают болевые ощущения и рефлекторное нарушение дея­тельности различных органов. При электротравме повышается и температура тела.

Электромеханическое действие обусловлено непосредственным переходом электрической энергии в механическую, а также дейст­вием образовавшихся на месте травмы газа и пара; указанные фак­торы вызывают в тканях структурные изменения типа резаных ран, переломов, костных трабекул и др.

Действие атмосферного электричества (молнии). Удар молнии в голову обычно влечет за собой смерть от паралича дыхания. Из местных изменений при ударе молнии возни­кают ожоги с разрывом тканей, на наружных покровах, вследствие паралича сосудистых нервов и самих сосудов появляются красные зигзагообразные фигуры. Язвы, образовавшиеся от удара молнии, плохо заживают. При несмертельном поражении молнией наблюда­ют потерю сознания, судороги, а иногда стойкие параличи.

Лучистая энергия

Воздействие на микроорганизмы различных форм лучистой энергии проявляется по-разному. В основе действия лежат те или иные химические или физические изменения, происходящие в клетках микроорганизмов и в окружающей среде.

Воздействие лучистой энергии подчиняется общим законам фотохимии – изменения могут быть вызваны только поглощенными лучами. Следовательно, для эффективности облучения большое значение имеет проникающая способность лучей.

Свет. В природе микроорганизмы постоянно подвергаются воздействию солнечной радиации. Свет необходим для жизни только фотосинтезирующих микробов, использующих световую энергию в процессе ассимиляции углекислого газа. Микроорганизмы, не способные к фотосинтезу, хорошо растут в темноте. Прямые солнечные лучи губительны для микроорганизмов; даже рассеянный свет подавляет в той или иной мере их рост. Однако развитие многих плесневых грибов в темноте протекает ненормально: при постоянном отсутствии света хорошо развивается только мицелий, а спорообразование тормозится.

Патогенные бактерии (за редким исключением) менее устойчивы к свету, чем сапрофитные.

Известно, что лучистая энергия переносится «порциями» – квантами. Действие кванта зависит от содержания в нем энергии. Количество энергии изменяется в зависимости от длины волны: чем она больше, тем меньше энергия кванта.

Инфракрасные лучи (ИК-лучи) обладают сравнительно большой длиной волны. Энергия этих излучений недостаточна, чтобы вызвать фотохимические изменения в поглощающих их веществах. В основном она превращается в тепло, что и оказывает губительное действие на микроорганизмы при использовании ИК-излучений для термической обработки продуктов.

Ультрафиолетовые лучи. Эти лучи являются наиболее активной частью солнечного спектра, обусловливающей его бактерицидное действие. Они обладают высокой энергией, доста-

точной для того, чтобы вызвать фотохимические изменения в поглощающих их молекулах субстрата и клетки.

Наибольшим бактерицидным действием обладают лучи с длиной волны 250–260 нм.

Эффективность воздействия УФ-лучей на микроорганизмы зависит от дозы облучения, т. е. от количества поглощенной энергии. Кроме того, имеет значение характер облучаемого субстрата: его рН, степень обсеменения микробами, а также температура.

Очень малые дозы облучения действуют даже стимулирующе на отдельные функции микроорганизмов. Более высокие,

но не приводящие к гибели дозы вызывают торможение отдельных процессов обмена, изменяют свойства микроорганизмов, вплоть до наследственных изменений. Это используется на практике для получения вариантов микроорганизмов с высокой способностью продуцировать антибиотики, ферменты и другие биологически активные вещества. Дальнейшее увеличение дозы’ приводит к гибели. При ■ дозе ниже смертельной возможно восстановление (реактивация) нормальной жизнедеятельности.

Различные микроорганизмы неодинаково чувствительны к одной и той же дозе облучения (рис. 24, 25).

Среди бесспоровых бактерий особенно чувствительны к облучению пигментные бактерии, выделяющие пигмент в окру-

жающую среду. Пигментные бактерии, содержащие каротино-идные пигменты, чрезвычайно стойки, так как каротиноидные пигменты обладают защитными свойствами против УФ-лучей.

Споры бактерий значительно устойчивее к действию УФ-лучей, чем вегетативные клетки. Чтобы убить споры, требуется в 4–5 раз больше энергии (см. табл. 9). Споры грибов более выносливы, чем мицелий.

Гибель микроорганизмов может быть следствием как непосредственного воздействия УФ-лучей на клетки, так и неблагоприятного для них изменения облученного субстрата.

УФ-лучи инактивируют ферменты, они адсорбируются важнейшими веществами

клетки (белками, нуклеиновыми кислотами) и вызывают изменения – повреждение их молекул. В облучаемой среде могут образоваться вещества (перекись водорода, озон и др.), губительно действующие на микроорганизмы.

В настоящее время УФ-лучи довольно широко применяют на практике. Искусственным источником ультрафиолетового излучения чаще служат аргонно-ртутные лампы низкого давления, называемые бактерицидными (БУВ-15,

Ультрафиолетовыми лучами дезинфицируют воздух холодильных камер, лечебных и производственных помещений. Обработка УФ-лучами в течение 6 ч уничтожает до 80 % бактерий и плесеней, находящихся в воздухе. Такие лучи могут быть использованы для предотвращения инфекции извне при розливе, фасовке и упаковке пищевых продуктов, лечебных препаратов, а также для обеззараживания тары, упаковочных материалов, оборудования, посуды (в предприятиях общественного питания).

В последнее время бактерицидные свойства УФ-лучей успешно применяют для дезинфекции питьевой воды.

Стерилизация пищевых продуктов с помощью УФ-лучей затрудняется их низкой проникающей способностью, в связи с чем действие этих лучей проявляется только на поверхности или в очень тонком слое. Тем не менее известно, что облучение охлажденных мяса, мясопродуктов удлиняет срок их хранения в 23 раза.

Рис. 24. Отмирание бактерий под действием УФ-лучей (по данным автора):

а – Esch. coli; б – Pseud, fluorescens; в – Micrococcus candicans; г – Sarcina flava; д – Вас. subtilis; e – Вас. megatherium

Рис. 25. Выживаемость дрожжей

вина под влиянием различных доз

облучения УФ-лучами (по данным

а – Sacch. ludwigii; б – Sacch. vini; s –

Hans, apiculata; г – Torulopsis utilis; д

Читать еще:  Как правильно обрабатывать пупок новорожденного с прищепкой

Предлагается применять УФ-лучи для стерилизации плодовых соков и вин (в тонком слое). При таком «холодном» способе стерилизации вино получается лучшего качества и сохраняется без порчи дольше, чем пастеризованное. Предлагается обработка совместно с ультразвуком (Г. П. Авакян).

Для некоторых продуктов (например, для сливочного масла, молока) стерилизация УФ-лучами неприемлема, так как в результате облучения ухудшаются вкусовые и пищевые свойства продуктов.

Радиоактивные излучения. Расщепление атомных ядер радиоактивных элементов сопровождается излучением α-лучей, β-лучей (высокоскоростные электроны) и γ-лучей (коротковолновые рентгеновские лучи). Энергия квантов радиоактивных излучений очень высока, в связи с чем они химически и биологически чрезвычайно активны, при этом γ-лучи менее активны, чем а- и β-лучи.

Характерной особенностью радиоактивных излучений является их способность вызывать ионизацию атомов и молекул (образуются положительно и отрицательно заряженные ионы), которая сопровождается разрушением молекулярных структур.

Микроорганизмы значительно радиоустойчивее, чем высшие организмы. Смертельная доза для них в сотни и тысячи раз выше, чем для животных.

Эффект действия ионизирующих излучений на микроорганизмы зависит от поглощенной дозы облучения. Очень малые дозы активизируют некоторые жизненные процессы микроорганизмов, воздействуя на их ферментные системы; они вызывают наследственные изменения свойств микробов, приводящие к появлению мутаций. С повышением дозы облучения обмен ‘ веществ нарушается значительнее, наблюдаются различные патологические изменения в клетках (лучевая болезнь), которые могут привести к их отмиранию. При дозе ниже смертельной может восстановиться нормальная жизнедеятельность облученных клеток.

Различные структуры и функции клетки обладают неодинаковой чувствительностью. Чувствительны к действию ионизирующих излучений многие ферментные системы, мембранные структуры, ядерный аппарат, особенно ДНК, что отражается при облучении на функции размножения.

Губительное действие радиоактивных излучений обусловлено многими факторами. Они вызывают радиолиз воды в клетках и в субстрате. При этом образуются свободные радикалы, атомарный водород, перекиси. Эти вещества, обладая высокой химической активностью, вступают во взаимодействие с другими веществами – возникает большое количество химических реакций, не свойственных нормально живущей клетке. В результате наступают необратимые нарушения обмена веществ, разрушаются ферменты, изменяются внутриклеточные структуры.

Радиоустойчивость различных микроорганизмов колеблется в широких пределах.

Для вегетативных клеток бактерий губительная доза облучения у-лучами лежит в пределах от 10 тыс. до 300 тыс. рад 1 , а для некоторых – даже 1 млн. рад (табл. 10). Чувствительны к облучению кишечная палочка, протей и сальмонеллы – возбудители пищевых отравлений, многие бактерии рода Pseudomonas – распространенные возбудители порчи мясных и рыбных продуктов. Микрококки отличаются повышенной устойчивостью. Особо радиоустойчивы споры бактерий; для их гибели необходима доза от 500 тыс. до 5 млн. рад. Если, например, вегетативные клетки Clostridium botulinum гибнут при дозе облучения 0,4 Мрад, то их споры – при 2,0–2,5 Мрад.

Смертельной дозой для большинства грибов и дрожжей являются дозы порядка сотен тысяч рад, но существуют виды более и менее радиоустойчивые.

Радиопоражаемость микроорганизмов одного и того же вида изменяется в зависимости от возраста клеток, состава среды, мощности дозы (дозы облучения в единицу времени).

В настоящее время расширяется использование ионизирующих излучений (в медицине, сельском хозяйстве, промышленности). Наиболее приемлемыми для обработки сельскохозяйственного сырья, пищевых продуктов оказались γ-лучи, обладающие наибольшей проникающей способностью и не вызы-

1 Ρ а д – единица измерения дозы ионизирующих излучений; соответствует 100 эрг, поглощенным 1 г облучаемого объекта. Крад – килорад= 1000рад. Мрад– мегарад= 1 млн. рад.

вающие при облучении появления в продукте «наведенной» радиации.

Трудами многих отечественных и зарубежных исследователей научно обоснована возможность и эффективность облучения γ-излучениями некоторых скоропортящихся пищевых продуктов для удлинения сроков их хранения. Источником этих лучей являются радиоактивные изотопы, чаще Со 60 .

В связи с высокой радиоустойчивостью бактериальных спор для стерилизации пищевых продуктов требуются большие дозы – около 4–5 Мрад. Однако такие дозы вызывают нежелательные изменения свойств многих продуктов: цвета, запаха, вкуса, растительные продукты размягчаются. Поэтому разработаны дозировки γ-излучений для частичного уничтожения микроорганизмов в продуктах. Такую обработку нестерилизую-щими дозами называют ρ а ду ρ и за цие й. Облучение дозами в пределах от 0,2 до 0,6 Мрад, не ухудшая качества продуктов, в сотни раз снижает их обсемененность микроорганизмами и значительно удлиняет срок хранения, особенно при сочетании с холодом (см. гл. 7, «Микробиология мяса и рыбы»).

На эффективность облучения большое влияние оказывает первоначальная обсемененность продукта микроорганизмами. Чем она больше, тем ниже действие принятой дозы ионизирующей радиации.

В радуризированных продуктах, как показали гигиенические исследования и эксперименты на животных, токсические для человека и канцерогенные вещества, видимо, не образуются.

Однако радуризация пищевых продуктов в нашей стране разрешается органами здравоохранения с большой осторож-‘ ностью. Для внедрения в практику пищевой промышленности любого нового способа обработки пищевого продукта требуется всестороннее доказательство безвредности обработанного продукта и отсутствия снижения его пищевой ценности и орга-нолептических свойств. Исследования в этой области продолжаются.

Радиоволны. Это электромагнитные волны, характеризующиеся относительно большой длиной – от миллиметров до километров и частотами от 3 -10 4 до 3·10 η герц (Гц) ‘.

Прохождение коротких и ультрарадиоволн (с длиной от 10 м до миллиметров) через среду вызывает в ней возникнове-” ние переменных токов высокой (ВЧ) и сверхвысокой частоты (СВЧ). В электромагнитном поле электрическая энергия преобразуется в тепловую.

Характер нагревания в поле ВЧ и СВЧ отличается от обычных способов нагрева и обладает рядом преимуществ. Объект

1 Герц (Гц) = одно колебание в секунду. Килогерц (кГц)=1000 колебаний. Мегагерц (МГц) = 1 000 000 колебаний в секунду. Герц, килогерц и мегагерц – единицы частоты.

(продукт) нагревается быстро и равномерно но всей массе. Воду в стакане, например, можно довести до кипения в течение 2–3 с. Рыба (1 кг) варится в течение 2 мин, мясо (1 кг) – 2,5, курица – 6–8 мин.

Нагрев может происходить избирательно, т. е. различные компоненты облучаемого объекта в зависимости от их электрофизических свойств будут нагреваться в различной степени.

Гибель микроорганизмов в электромагнитном поле высокой интенсивности наступает в результате теплового эффекта, но полностью механизм действия СВЧ-энергии на микроорганизмы не раскрыт. Некоторые исследователи считают, что существует специфическое воздействие электромагнитных волн. Установлено, что СВЧ-поля малой интенсивности, не вызывающей нагревания среды, оказывают влияние на некоторые физиологические и биохимические свойства микробных клеток. Приводятся данные по гибели некоторых бактерий и дрожжей в СВЧ-поле при 35–40 °С (А. И. Педенко и др.).

Благодаря специфическим особенностям этого способа нагревания перспективно применение его для пастеризации и стерилизации пищевых продуктов, в частности для плодово-ягодных консервов (компотов, джемов, фруктовых соков и пр.). По сравнению с обычной паровой стерилизацией в автоклавах плоды и ягоды благодаря значительному сокращению срока нагревания (1–3 мин) до температуры 90–100 °С гораздо лучше сохраняют свои первоначальные свойства (аромат, вкус, консистенцию, витаминность) при обеспечении достаточной стерильности.

В последние годы сверхвысокочастотная электромагнитная обработка пищевых продуктов все более применяется в пищевой промышленности и общественном питании (для варки, сушки, выпечки, разогревания, размораживания и др.).

По сравнению с традиционным способом тепловой обработки время нагревания СВЧ-энергией до одной и той же температуры сокращается во много раз, в связи с чем полнее сохраняются вкусовые и питательные свойства продукта, а эффект воздействия на его микрофлору практически одинаков. Остаточной микрофлоры не более, чем в продукте, обработанном при той же температуре традиционным способом: в составе ее преобладают спороносные бактерии и микрококки.

Для каждого вида продукта требуются оптимальные режимы СВЧ-нагрева, так как микрофлора по составу может быть значительно различной, а чувствительность разных микроорганизмов неодинакова.

Источники:

http://studwood.ru/1111407/matematika_himiya_fizika/obschie_svedeniya_luchistoy_energii_solntsa_primenenie
http://lektsii.org/3-128101.html
http://studopedia.ru/5_142275_luchistaya-energiya.html

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов: